3.255 \(\int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=177 \[ \frac {13 \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{64 \sqrt {2} a^{7/2} d}-\frac {5 \sin (c+d x) \sqrt {\cos (c+d x)}}{192 a^2 d (a \cos (c+d x)+a)^{3/2}}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{16 a d (a \cos (c+d x)+a)^{5/2}}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{6 d (a \cos (c+d x)+a)^{7/2}} \]

[Out]

13/128*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(7/2)/d*2^(1/2)+1/6*si
n(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(7/2)+1/16*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d/(a+a*cos(d*x+c))^(5/2)
-5/192*sin(d*x+c)*cos(d*x+c)^(1/2)/a^2/d/(a+a*cos(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 177, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2764, 2978, 12, 2782, 205} \[ -\frac {5 \sin (c+d x) \sqrt {\cos (c+d x)}}{192 a^2 d (a \cos (c+d x)+a)^{3/2}}+\frac {13 \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{64 \sqrt {2} a^{7/2} d}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{16 a d (a \cos (c+d x)+a)^{5/2}}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{6 d (a \cos (c+d x)+a)^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]/(a + a*Cos[c + d*x])^(7/2),x]

[Out]

(13*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(64*Sqrt[2]*a^(7/2)*
d) + (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(6*d*(a + a*Cos[c + d*x])^(7/2)) + (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(1
6*a*d*(a + a*Cos[c + d*x])^(5/2)) - (5*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(192*a^2*d*(a + a*Cos[c + d*x])^(3/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2764

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a*d*n - b*c*(m + 1) - b*d*(m + n + 1)*Sin[
e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^{7/2}} \, dx &=\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {\int \frac {\frac {a}{2}+2 a \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{5/2}} \, dx}{6 a^2}\\ &=\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2}}+\frac {\int \frac {\frac {11 a^2}{4}+\frac {3}{2} a^2 \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx}{24 a^4}\\ &=\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2}}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {39 a^3}{8 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{48 a^6}\\ &=\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2}}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2}}+\frac {13 \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{128 a^3}\\ &=\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2}}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2}}-\frac {13 \operatorname {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{64 a^2 d}\\ &=\frac {13 \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{64 \sqrt {2} a^{7/2} d}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2}}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.86, size = 149, normalized size = 0.84 \[ \frac {\sin \left (\frac {1}{2} (c+d x)\right ) \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} \sqrt {a (\cos (c+d x)+1)} \left (4 \cos (c+d x)-5 \cos (2 (c+d x))-156 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \cot ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {2-2 \sec (c+d x)} \tanh ^{-1}\left (\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right ) (-\sec (c+d x))}\right )+73\right )}{192 a^4 d (\cos (c+d x)+1)^4} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]/(a + a*Cos[c + d*x])^(7/2),x]

[Out]

(Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]]*Sqrt[a*(1 + Cos[c + d*x])]*(73 + 4*Cos[c + d*x] - 5*Cos[2*(c + d*x)] - 15
6*ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cos[(c + d*x)/2]^4*Cot[(c + d*x)/2]^2*Sqrt[2 - 2*Sec[c + d
*x]])*Sin[(c + d*x)/2])/(192*a^4*d*(1 + Cos[c + d*x])^4)

________________________________________________________________________________________

fricas [A]  time = 1.13, size = 214, normalized size = 1.21 \[ \frac {39 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{4} + 4 \, \cos \left (d x + c\right )^{3} + 6 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (5 \, \cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) - 39\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{384 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

1/384*(39*sqrt(2)*(cos(d*x + c)^4 + 4*cos(d*x + c)^3 + 6*cos(d*x + c)^2 + 4*cos(d*x + c) + 1)*sqrt(a)*arctan(1
/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c)
)) - 2*sqrt(a*cos(d*x + c) + a)*(5*cos(d*x + c)^2 - 2*cos(d*x + c) - 39)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^4
*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*cos(d*x + c) + a^4*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate(sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

maple [A]  time = 0.17, size = 280, normalized size = 1.58 \[ \frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (-1+\cos \left (d x +c \right )\right )^{3} \left (-5 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+39 \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+7 \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+78 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )+37 \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+39 \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \sin \left (d x +c \right )-39 \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {2}}{384 d \sin \left (d x +c \right )^{7} \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(7/2),x)

[Out]

1/384/d*cos(d*x+c)^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*(-1+cos(d*x+c))^3*(-5*cos(d*x+c)^3*2^(1/2)*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)+39*arcsin((-1+cos(d*x+c))/sin(d*x+c))*cos(d*x+c)^2*sin(d*x+c)+7*cos(d*x+c)^2*2^(1/2)*(cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)+78*cos(d*x+c)*sin(d*x+c)*arcsin((-1+cos(d*x+c))/sin(d*x+c))+37*cos(d*x+c)*2^(1/2)*(c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)+39*arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)-39*2^(1/2)*(cos(d*x+c)/(1+cos
(d*x+c)))^(1/2))/sin(d*x+c)^7/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)/a^4

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate(sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {\cos \left (c+d\,x\right )}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(1/2)/(a + a*cos(c + d*x))^(7/2),x)

[Out]

int(cos(c + d*x)^(1/2)/(a + a*cos(c + d*x))^(7/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________